Free energy barrier for the N-formyl methionine self-activation in water

Aurélie Gouron*^{†1}, Rolf David¹, Hélène Jamet¹, Yannick Vallée¹, and Anne Milet^{‡1}

¹Département de Chimie Moléculaire (DCM) − CNRS : UMR5250, Université Joseph Fourier - Grenoble I − 301, rue de la Chimie 38041 GRENOBLE CEDEX 9, France

Résumé

Solvent effects are critical for studying chemical reactions. The methods used to describe these effects can be divided in three groups: dielectric continuum model, cluster-continuum model and explicit water molecules. The aim of this study is to evaluate the free energy barrier of the N-formyl methionine self-activation. This example was chosen for its possible implication in the synthesis of peptides in the prebiotic conditions, ie the primitive ocean [1].

Solvent effects are expected to play a key role for this reaction because it involves the formation of a hydroxyl ion. First, static QM calculations were performed in small clusters of water and a continuum of solvent. As expected, we show a large variation of the activation barrier depending on the number of water in the cluster. This variation is due to a too weak description of the solvation of the hydroxide ion formed during the reaction. So the system was solvated in a box of explicit water to ensure an accurate description of solvent effects.

Ab initio molecular dynamics studies were conducted to provide a better description of the reaction and a larger sampling. A protocol including complementary metadynamics and thermodynamics integration studies was proposed to overcome the rare events issue that cannot be explored by dynamics. This protocol provides a realistic description of the transition state and an accurate estimation of the activation barrier. Metadynamics allows a quick overview of the reaction path and an access to transition state structures without human intervention. It gives structures to perform thermodynamics integration, which provides a good estimation of the free energy of activation.

Milet, A., Gouron, A., David, R., Jamet, H., & Vallee, Y. (2013, September). En route to life: The very first step. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY (Vol. 246)

Mots-Clés: Free energy, reactivity in water, metadynamics, thermodynamics integration

^{*}Intervenant

 $^{^\}dagger Auteur\ correspondant:\ aurelie.gouron@ujf-grenoble.fr$

[‡]Auteur correspondant: anne.milet@ujf-grenoble.fr